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ABSTRACT

A new algorithm for estimating motion from image sequences
is presented. Initial motion estimates are determined based
on a least-squares solution to a set of independent linear con-
straints on the motion at a pixel. These initial estimates are

-'I then improved by a nonlinear smoothing operation. The results
of this algorithm are compared with those obtained by the Horn-

Schunck algorit> on a number of image sequences.
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1. Introduction

One of the key problems in analysis of time-varying images

is the computation of object motion from frame to frame. Huang

(11 identifies three approaches to motion estimation from image

sequences:

1) Fourier methods

2) Correspondence methods

3) Differential methods.

Fourier methods are based on the observation that a 2-D

translation and/or rotation of an image has a simple effect on

the Fourier transform of the image. For example, a translation

results in a phase shift of the transform, so that differences

in the appropriate phase angles from frame to frame determine a

translation. For this approach to work, the object must be trans-

* lating across a homogeneous ("flat") background. However, exten-

sions to rotation (and scale) involve more complicated compari-

son of transforms, which makes the approach computationally unat-

tractive.

Correspondence methods are two stage methods and involve

J 1) finding image points in successive frames which corres-

pond to the projection of the same scene point, and

2) using those correspondences to solve for the motion.

Step 2 is straightforward in principle, although it may involve

non-linear parameter estimation (see Ullman [2], Huang [1] and

Huang and Tsai [3]). If the motion changes slowly with time,

then this is not a severe practical problem.



For step 1, we must determine reliably identifiable image

features which are invariant to motion. For example, if image

boundaries correspond to locally planar reflectance contours on

3-D objects, then curvature discontinuities and curvature zero-

crossings are features invariant to motion, and can be used to

compute the correspondences in step 1. For a survey of match-

ing algorithms for solving the correspondence problem, see [4].

Differential methods are based on the relationship between

motion and spatial/temporal image intensity derivatives, name-

ly that

-t= I x u + Iy v()

where Itis the temporal intensity derivative, I x and I yare

the spatial intensity derivatives in the x and y directions,

and u and v are the components of the motion in the x and y direc-

tions. Equation (1) can be derived using a Taylor series expan-

sion for the image function and assuming a) that gray level is

invariant to motion and b) that the image intensity function

is locally planar, i.e., higher order spatial intensity deriva-

tives are zero. Equation (1) represents a linear constraint

on u and v, so that while the component of motion in the gradi-

ent direction can be determined (the "normal component"), the

component in the level direction cannot. However, by combining

the motion constraints from a number of points, one can compute

an estimate of the image motion.



These constraints are combined based on assumptions about

the image vectors. For example, in [5,61 the assumption is

made that the image motion vectors are locally constant (cor-

responding to an image plane translation) so that the least-

square pseudo-intersection of the constraint lines in (u,v)

space represents the motion vector at each point. Since such

approaches require combining the normal velocity components of

neighboring points, they will not yield reliable estimates near

the boundaries of moving objects. In Section 2 of this paper we

show how multiple linear constraints on image motion can be

derived at individual points so that a motion estimate can be

computed for a point without making any assumptions about the

spatial pattern of motion vectors.

Unfortunately, the motion vectors computed using this ap-

proach (or the pseudo-intersection approach) are not reliable,

so that it is desirable to perform some (perhaps iterative)

spatial smoothing of the vectors. An important property of such

smoothing schemes is that they should not smooth across the boun-

dary of a moving object. In Section 3 of this paper we present

* * such a technique. We assume that the image motion is locally a

rigid 2hD motion (see also Schalkof f and McVey [ 71) and smooth

the velocity vector at a point based on associating it with that

one of its 8-neighbors whose neighborhood is "most smooth" in

this sense (compare Haralick [81). For interior points near the

boundary of a moving object, we could expect such an approach to

choose a neighborhood which is completely contained within the

object.



2. Multiple constraint equations of a single point

The differential methods discussed in Section 1 are based

on the assumption that the image intensity corresponding to

i* any scene point is invariant to motion; i.e., if I(x,y,t) is

the intensity at position (x,y) and time t, and if the image

motion is (u,v), then I(x,y,t)=I(x+u,y+v,t+l). Since the in-

tensity is invariant to motion, so are various derivatives of

intensity. In particular, the gradient of intensity would be

invariant to motion, so that we can write a second linear con-

straint on the image motion:

Gxu + Gyv = -Gt (2)

where Gx and Gy are the spatial derivatives of the image gradi-xy
ent (i.e., directional second derivatives) and Gt is the tem-

poral derivative of the gradient.

In general, if F denotes any motion-invariant feature, we

can produce the constraint equation

Fxu + Fyv = -Ft (3)

For example, F may be the gradient direction, the curvature of

the surface, the moments of local intensity distributions, or

higher-order derivatives of intensity. However, in practice,

features that are defined in terms of higher-order spatial

derivatives are not reliable since the differentiation operation

tends to amplify noise.

Notice that we can also construct sets of constraint equa-

tions from color images, since at least one constraint equation
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may be obtained from each band. If more than two constraint

equations are available at any point, then a least-square solu-

tion to the pseudo-intersection of these constraints can be

obtained using pseudo-inverse techniques.
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3. Iterative algorithm for motion enhancement

The velocity vectors computed either by spatially integrat-

ing constraints from local neighborhoods of points or combining

multiple constraint equations from a single point are often inac-

curate. In this section we introduce an iterative algorithm for

enhancing such motion vectors.

The method for smoothing motion vectors is based on the fol-

lowing two assumptions:

1. Objects are rigid, and

2. Objects are undergoing 2hD motion, i.e., they move

along a plane perpendicular to the line of sight with

arbitrary translational and rotational velocity.

We iteratively update the velocity at point P on the image

as follows. First, choose the neighbor of P whose 3x3 neighbor-

hood of motion vectors best fits a 2hD rigid motion. Let the

4 rotational velocity in that neighborhood be w. Since the rota-

tional velocity is constant over a single moving object, we

regard w as the rotational velocity for P and update the velo-

city at P. The details are described below.

IFigure 1 shows an object moving with angular velocity i

and translational velocity v'k. 0* is the center of rotation.

For an arbitrary point P on the object surface, the resultant

velocity v is
4. 4
V vT + rx (4)

Given the image motion vectors at P and P', we compute w (the

rotatioial veloci~ty of PI about P) as follows:



,.--, =. -',,.- -, -)

AvVt - V (5)
4+ 4b 41 -1

Ar = i' R =r' - r (6)

The rotational velocity W-' at P' with respect to P is then

Ar x ArS= + 12(7)
ItArII 2

The rotational velocity at P is obtained by averaging W' for

all points in a neighborhood, N, of P of size n:

= Z w/n (8)
i(N

To compute motion along the line of sight, we consider the quan-

tity

Ar AV (9)
iEN IlArIl

D is a measure of dilation, which reflects motion along the line

of sight. For 2hD object motion D should be constant for all

points in a moving object. (D>0 if the relative depth is de-

creasing.)

Next we consider the following two error measurements at an

arbitrary point i:
E= jz i~ - .i2 (10)

E? = 2 [D. - Di ]  (11)

To update the velocity at point P, we choose a point P' from P's

neighborhood such that the linear combination Ep, of the above

two errors is a minimum at P':

Ep, - min[E + i-E 2 (12)J(NJ
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where a is a scalar. The velocity v at P is then adjusted by

assuming that P has the rotational velocity 6' with respect to

PO and computing

v V , V - Ar x w, (13)

where -' is the translational velocity at P' and Ai is the vec-

tor joining P and P'. An important advantage of this approach

is that since the error measurements along a moving boundary are

relatively large, the enhancement tends not to combine the mo-

tion estimates across such boundaries.

We4
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4. Experiments

In this section we describe a set of experiments designed

to demonstrate the behavior of the motion estimation and smooth-

ing algorithms described in the previous sections. For corn-

parison, we also implemented one other motion estimation algo-

rithm (the pseudo-intersection method mentioned in Section 1) and

one of the motion smoothing algorithms (the one described in

Horn and Schunck [91 - although note that in [9] the original

motion vector field was Just the field of normal components).

Thel t image sequences are displayed in Figures 2-4.

Figure 2. s a sequence that contains two moving cars. Figure

3 and 4 are synthetic images. In Figure 3, a sphere rotates

in the image plane, while approaching the viewer (a 2-D rotation

with zoom). In Figure 4, the same sphere undergoes a 3-D rota-

tion, while approaching the viewer and translating towards the

right. The intensity corresponding to any point on the sphere

is invariant to the motion.

Although, in principle, it is possible to use the multiple

constraint method to compute a velocity vector at each point, in

fact a number of practical considerations limit the set of points

at which useful estimates can be obtained to points:

1) having non-zero spatial and temporal intensity derivatives,

2) having non-singular matrices corresponding to the multi-

ple constraint equations, and

3) for which the estimated motion is small (i.e., vector

magnitude less than 5 pixels).
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Figure 5a shows the motion estimates f or the multi-con-

straint method for frame 6 of the moving car sequence. All

spatial derivatives are based on fitting a quadratic surface

to a 5x5 neighborhood, and all temporal gradients are based

on a quadratic approximation to 5 consecutive temporal

points. For comparison, Figure 5b shows the motion vectors

computed by the pseudo-intersection method. They are much

better approximations to the actual motion, although as we

shall see, the motion enhancement algorithm plays a larger

role than the initial estimates in determining the accuracy

of the final motion vector field.

Next, we consider three combinations of initial motion

estimation and motion enhancement:

A) Multi-constraint initial estimation with Horn and

Schunck motion enhancement.

B) Pseudo-intersection initial estimation with Horn and

Schunck motion enhancement.

C) Pseudo-intersection initial estimation with the motion

enhancement algorithm of Section 3.

By comparing A and B we can evaluate the role of the initial

estimates in the overall motion computation, while the compari-

son of B with C can demonstrate whether the computationally

more costly algorithm of Section 3 (which is designed to avoid

smoothing over motion boundaries) has its higher cost justified

by better motion estimates.



.. In order to evaluate the results quantitatively, we con-

sider two error measures. The first measure was designed

to enable us to evaluate motion estimates on sequences for

which the actual motion is unknown and is based on measur-

ing how well the motion vectors predict intensity from one

frame to the next. This measure, Ep, is defined as
1 Itlt1Ep (t) = 1 Z II III a
ii v

p n iEL 1

where:

a) It is the intensity of pixel i at time t,
1

b) L is the set of pixels at which the estimated motion vector

is non-zero, and

c) n is the size of L.

The second measure, Ev, compares the estimated motion vectors

with true motion vectors, and is defined as
Et)- z - v~l
E mv m i~k ji't je

where

a) V# is the true motion vector at point i at time t,

b) Vi. t is the estimated motion vector at point i at time t,

c) K is the set of points having non-zero true motion, and

d) m is the size of the set K.

Figure 6a-d show E for four frames of the car sequence in

*Figure 2. We can make the following observations about these

graphs (the observations also hold for other frames in this

sequence):
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1) The final motion vectors are not particularly sensitive

to the choice of initial estimate, but appear to depend

-~ more critically on the enhancement algorithm. (Compare

A-B.)

2) Most of the enhancement takes place during the first

two iterations of either enhancement algorithm.

3) After 3 iterations the differences between all three ap-

proaches are insignificant, so that we would choose among

them based on computational cost (which would lead to a

choice of B - pseudo-intersection with Horn and Schunck.)

.4 Since the multi-constraint method offers, no practical

*6,p advantages over pseudo-intersection method for initial

-~ motion estimation, we will not consider method A in the

remaining examples.

Consider next the spheres in Figures 3 and 4. Figures 7 and

8 show E v for one frame from each of these sequences.

Here, curve A corresponds to the non-linear enhancement algo-

rithm in Section 3 and curve B corresponds to the Horn-Schunck

algorithm. Furthermore, we have decomposed the total error into

two components - one corresponding to a region near the border

of the sphere (A-1 and B-1), and the second corresponding to the

interior of the sphere (A-2. B-2). we observe that for both the

2-D and the 3-D motion, the error component due to the boundary

is less for the non-linear enhancement algorithm than for the

Horn-Schunck algorithm. Thus, near the boundary, at least, the

* search for a "best" neighborhood to compute the enhancement does

lead to more accurate motion estimates. Considering the



component of error on the interior of the sphere, we note that

both the non-linear algorithm and Horn-Schunck produce very

accurate motion estimates for the 2hD motion (errors of -.1).

This is not surprising, since the non-linear algorithm is expli-

citly based on a 2hD motion assumption, while as regards Horn-

Schunck, the Laplacian of a 2hD motion vector field is zero.

The two algorithms produce similar, but higher, errors in the

3-D motion case, the slightly better performance of the nonlinear

* algorithm perhaps attributable to the search for a best neigh-

borhood.

.4!
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5. conclusions

Based on the experiments presented in Section 4 we can

draw the following conclusions:

1. The multi-constraint algorithm does not produce

reliable motion estimates.

2-. The enhancement algorithm plays a much larger role

than the initial estimates in determining the utility

of the final motion estimates.

3. Enhancing the motion estimate'of a pixel based on first

searching for the "best" neighborhood containing that

pixel (i.e., the neighborhood whose motion estimates

best satisfy the given motion model) yields much more

accurate motion estimates near the borders of moving

regions.
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